• chevron_right

      Horny tortoises and solar mysteries: what scientists can learn from a total eclipse – podcast

      news.movim.eu / TheGuardian · Tuesday, 9 April - 04:00

    For most people seeing a total solar eclipse is a once in a lifetime experience. But for scientists it can be a fleeting chance to understand something deeper about their field of research. Madeleine Finlay meets solar scientist prof Huw Morgan, of Aberystwyth University, and Adam Hartstone-Rose, professor of biological sciences at NC State University, to find out what they hoped to learn from 8 April’s four minutes of darkness.

    Find out more about how animals behave during a solar eclipse

    Continue reading...
    • chevron_right

      Gravitational waves reveal “mystery object” merging with a neutron star

      news.movim.eu / ArsTechnica · Monday, 8 April - 17:41 · 1 minute

    Artistic rendition of a black hole merging with a neutron star.

    Enlarge / Artistic rendition of a black hole merging with a neutron star. LIGO/VIRGO/KAGRA detected a merger involving a neutron star and what might be a very light black hole falling within the "mass gap" range. (credit: LIGO-India/ Soheb Mandhai)

    The LIGO/VIRGO/KAGRA collaboration searches the universe for gravitational waves produced by the mergers of black holes and neutron stars. It has now announced the detection of a signal indicating a merger between two compact objects, one of which has an unusual intermediate mass—heavier than a neutron star and lighter than a black hole. The collaboration provided specifics of their analysis of the merger and the "mystery object" in a draft manuscript posted to the physics arXiv, suggesting that the object might be a very low-mass black hole.

    LIGO detects gravitational waves via laser interferometry , using high-powered lasers to measure tiny changes in the distance between two objects positioned kilometers apart. LIGO has detectors in Hanford, Washington state, and in Livingston, Louisiana. A third detector in Italy, Advanced VIRGO , came online in 2016. In Japan, KAGRA is the first gravitational-wave detector in Asia and the first to be built underground. Construction began on LIGO-India in 2021, and physicists expect it will turn on sometime after 2025.

    To date, the collaboration has detected dozens of merger events since its first Nobel Prize-winning discovery . Early detected mergers involved either two black holes or two neutron stars, but in 2021, LIGO/VIRGO/KAGRA confirmed the detection of two separate "mixed" mergers between black holes and neutron stars.

    Read 7 remaining paragraphs | Comments

    • chevron_right

      New 3D cosmic map raises questions over future of universe, scientists say

      news.movim.eu / TheGuardian · Thursday, 4 April - 15:00

    Researchers say findings from map with three times more galaxies than previous efforts could challenge standard idea of dark energy

    The biggest ever 3D map of the universe, featuring more than 6m galaxies, has been revealed by scientists who said it raised questions about the nature of dark energy and the future of the universe.

    The map is based on data collected by the Dark Energy Spectroscopic Instrument (Desi) in Arizona and contains three times as many galaxies as previous efforts, with many having their distances measured for the first time.

    Continue reading...
    • chevron_right

      Dark energy might not be constant after all

      news.movim.eu / ArsTechnica · Thursday, 4 April - 15:00 · 1 minute

    DESI has made the largest 3D map of our universe to date. Earth is at the center of this thin slice of the full map.

    Enlarge / The Dark Energy Spectroscopic Instrument (DESI) has made the largest 3D map of our universe to date. (credit: Claire Lamman/DESI collaboration)

    An international collaboration of scientists has created the largest 3D map of our universe to date based on the first results from the Dark Energy Spectroscopic Instrument (DESI). It's an impressive achievement, with more to come, but the most significant finding stems from the collaboration's new measurements of dark energy. Those results roughly agree with the current prevailing theoretical model for dark energy, in which dark energy is constant over time. But there are some tantalizing hints that it could vary over time instead, which would call for some changes to that prevailing model.

    Granted, those hints are still below the necessary threshold to claim discovery and hence fall under the rubric of "huge, if true." We'll have to wait for more data from DESI's continuing measurements to see if they hold up. In the meantime, multiple papers delving into the technical details behind these first results have been posted to the arXiv, and there will be several talks presented at a meeting of the American Physical Society being held this week in Sacramento, California, as well as at Rencontres de Moriond in Italy.

    “Our results show some interesting deviations from the standard model of the universe that could indicate that dark energy is evolving over time,” said Mustapha Ishak-Boushaki , a physicist at the University of Texas, Dallas, and a member of the DESI collaboration. “The more data we collect, the better equipped we will be to determine whether this finding holds. With more data, we might identify different explanations for the result we observe or confirm it. If it persists, such a result will shed some light on what is causing cosmic acceleration and provide a huge step in understanding the evolution of our universe.”

    Read 18 remaining paragraphs | Comments

    • chevron_right

      Quantum error correction used to actually correct errors

      news.movim.eu / ArsTechnica · Wednesday, 3 April - 15:08 · 1 minute

    Image of a chip with a device on it that is shaped like two triangles connected by a bar.

    Enlarge / Quantinuum's H2 "racetrack" quantum processor. (credit: Quantinuum)

    Today's quantum computing hardware is severely limited in what it can do by errors that are difficult to avoid. There can be problems with everything from setting the initial state of a qubit to reading its output, and qubits will occasionally lose their state while doing nothing. Some of the quantum processors in existence today can't use all of their individual qubits for a single calculation without errors becoming inevitable.

    The solution is to combine multiple hardware qubits to form what's termed a logical qubit. This allows a single bit of quantum information to be distributed among multiple hardware qubits, reducing the impact of individual errors. Additional qubits can be used as sensors to detect errors and allow interventions to correct them. Recently, there have been a number of demonstrations that logical qubits work in principle .

    On Wednesday, Microsoft and Quantinuum announced that logical qubits work in more than principle. "We've been able to demonstrate what's called active syndrome extraction, or sometimes it's also called repeated error correction," Microsoft's Krysta Svore told Ars. "And we've been able to do this such that it is better than the underlying physical error rate. So it actually works."

    Read 19 remaining paragraphs | Comments

    • chevron_right

      Astronomers have solved the mystery of why this black hole has the hiccups

      news.movim.eu / ArsTechnica · Thursday, 28 March - 19:56 · 1 minute

    graphic of hiccuping black hole

    Enlarge / Scientists have found a large black hole that “hiccups,” giving off plumes of gas. (credit: Jose-Luis Olivares, MIT)

    In December 2020, astronomers spotted an unusual burst of light in a galaxy roughly 848 million light-years away—a region with a supermassive black hole at the center that had been largely quiet until then. The energy of the burst mysteriously dipped about every 8.5 days before the black hole settled back down, akin to having a case of celestial hiccups.

    Now scientists think they've figured out the reason for this unusual behavior. The supermassive black hole is orbited by a smaller black hole that periodically punches through the larger object's accretion disk during its travels, releasing a plume of gas. This suggests that black hole accretion disks might not be as uniform as astronomers thought, according to a new paper published in the journal Science Advances.

    Co-author Dheeraj "DJ" Pasham of MIT's Kavli Institute for Astrophysics and Space research noticed the community alert that went out after the All Sky Automated Survey for SuperNovae (ASAS-SN) detected the flare, dubbed ASASSN-20qc. He was intrigued and still had some allotted time on the X-ray telescope, called NICER (the Neutron star Interior Composition Explorer) on board the International Space Station. He directed the telescope to the galaxy of interest and gathered about four months of data, after which the flare faded.

    Read 6 remaining paragraphs | Comments

    • chevron_right

      Quantum computing progress: Higher temps, better error correction

      news.movim.eu / ArsTechnica · Wednesday, 27 March - 22:24 · 1 minute

    conceptual graphic of symbols representing quantum states floating above a stylized computer chip.

    Enlarge (credit: vital )

    There's a strong consensus that tackling most useful problems with a quantum computer will require that the computer be capable of error correction. There is absolutely no consensus, however, about what technology will allow us to get there. A large number of companies, including major players like Microsoft, Intel, Amazon, and IBM, have all committed to different technologies to get there, while a collection of startups are exploring an even wider range of potential solutions.

    We probably won't have a clearer picture of what's likely to work for a few years. But there's going to be lots of interesting research and development work between now and then, some of which may ultimately represent key milestones in the development of quantum computing. To give you a sense of that work, we're going to look at three papers that were published within the last couple of weeks, each of which tackles a different aspect of quantum computing technology.

    Hot stuff

    Error correction will require connecting multiple hardware qubits to act as a single unit termed a logical qubit. This spreads a single bit of quantum information across multiple hardware qubits, making it more robust. Additional qubits are used to monitor the behavior of the ones holding the data and perform corrections as needed. Some error correction schemes require over a hundred hardware qubits for each logical qubit, meaning we'd need tens of thousands of hardware qubits before we could do anything practical.

    Read 21 remaining paragraphs | Comments

    • chevron_right

      Event Horizon Telescope captures stunning new image of Milky Way’s black hole

      news.movim.eu / ArsTechnica · Wednesday, 27 March - 20:55 · 1 minute

    A new image from the Event Horizon Telescope has revealed powerful magnetic fields spiraling from the edge of a supermassive black hole at the center of the Milky Way, Sagittarius A*.

    Enlarge / A new image from the Event Horizon Telescope has revealed powerful magnetic fields spiraling from the edge of a supermassive black hole at the center of the Milky Way, Sagittarius A*. (credit: EHT Collaboration)

    Physicists have been confident since the1980s that there is a supermassive black hole at the center of the Milky Way galaxy, similar to those thought to be at the center of most spiral and elliptical galaxies. It's since been dubbed Sagittarius A* (pronounced A-star), or SgrA* for short. The Event Horizon Telescope (EHT) captured the first image of SgrA* two years ago. Now the collaboration has revealed a new polarized image (above) showcasing the black hole's swirling magnetic fields. The technical details appear in two new papers published in The Astrophysical Journal Letters. The new image is strikingly similar to another EHT image of a larger supermassive black hole, M87*, so this might be something that all such black holes share.

    The only way to "see" a black hole is to image the shadow created by light as it bends in response to the object's powerful gravitational field. As Ars Science Editor John Timmer reported in 2019, the EHT isn't a telescope in the traditional sense. Instead, it's a collection of telescopes scattered around the globe. The EHT is created by interferometry, which uses light in the microwave regime of the electromagnetic spectrum captured at different locations. These recorded images are combined and processed to build an image with a resolution similar to that of a telescope the size of the most distant locations. Interferometry has been used at facilities like ALMA (the Atacama Large Millimeter/submillimeter Array) in northern Chile, where telescopes can be spread across 16 km of desert.

    In theory, there's no upper limit on the size of the array, but to determine which photons originated simultaneously at the source, you need very precise location and timing information on each of the sites. And you still have to gather sufficient photons to see anything at all. So atomic clocks were installed at many of the locations, and exact GPS measurements were built up over time. For the EHT, the large collecting area of ALMA—combined with choosing a wavelength in which supermassive black holes are very bright—ensured sufficient photons.

    Read 10 remaining paragraphs | Comments

    • chevron_right

      Report: Superconductivity researcher found to have committed misconduct

      news.movim.eu / ArsTechnica · Thursday, 21 March - 18:44

    Image of a large lawn, with a domed building flanked by trees and flagpoles at its far end.

    Enlarge / Rush Rhees Library at the University of Rochester. (credit: Kickstand )

    We've been following the saga of Ranga Dias since he first burst onto the scene with reports of a high-pressure, room-temperature superconductor, published in Nature in 2020. Even as that paper was being retracted due to concerns about the validity of some of its data, Dias published a second paper claiming a similar breakthrough: a superconductor that works at high temperatures but somewhat lower pressures. Shortly afterward, that got retracted as well .

    On Wednesday, the University of Rochester, where Dias is based, announced that it had concluded an investigation into Dias and found that he had committed research misconduct. (The outcome was first reported by The Wall Street Journal.)

    The outcome is likely to mean the end of Dias' career, as well as the company he founded to commercialize the supposed breakthroughs. But it's unlikely we'll ever see the full details of the investigation's conclusions.

    Read 10 remaining paragraphs | Comments